The iterated Prisoner's Dilemma in societies of deterministic players

- J.A. de la Peñaa,
- <u>N. Tello</u>

Abstract

Two players engaged in the Prisoner's Dilemma have to choose between cooperation and defection, the pay-off of the players is determined by a weight w = (T, R, P, S). For deterministic strategies p_1, \ldots, p_n we consider a *society* $S = S(ui: pi \mid i = 1, \ldots, n)$ formed by $w = \sum_{i=1}^{n} w_i$ individuals playing at random the IPD with weight w. We introduce the concept of a *w*-successful society as one where all individuals have eventually a non-negative pay-off. We discuss success of individuals and societies by means of quadratic forms associated to the pay-off matrix of the given set of strategies.

Keywords

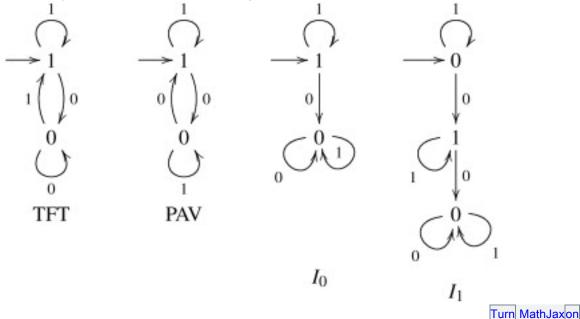
- Prisoner's Dilemma;
- Iterated Prisoner's Dilemma;
- Successful societies;
- Weakly positive quadratic forms

1. Introduction

Since its formulation in 1950, the Prisoner's Dilemma has become the leading metaphor to investigate rationales for cooperation (see [1], [4] and [7] for extensive literature lists). Two players engaged in the Prisoner's Dilemma have to choose between cooperation and defection. The players confront each other indefinitely often, receiving in each round R points if they both cooperate and P points if they both defect; moreover, a defector exploiting a cooperator receives T points, while the cooperator receives only Spoints. assumed lt is that T > R > 0 > P > S and 0 > T + S, the last condition implying that it is not worth for a player to defect alternatively while the cooperate and coplaver is cooperating. А tuple w = (T, R, P, S) satisfying the above conditions is called an *admissible weight*.

The iterated Prisoner's Dilemma (IPD) offers rich possibilities for ingenious strategies. Most of the literature on the topic deals only with stochastic strategies (see for example [7] and [8]). A *deterministic strategy* $p = (\{a0, a1, ..., an\}, f0, f1, S)$ is given by a finite set $\{a0, a1, ..., an\}$ of states, where a0 is a distinguished *initial state* ; f0 and f1 are *transition functions* of the states and *s* is the *outcome function* assigning 0 or 1 to each state, where 1 stands for cooperating and 0 for defecting. Hence a deterministic strategy is a finite automaton (see [2]).

Deterministic strategies may be depicted as finite oriented valued digraphs, as in the following examples, where \rightarrow indicates the initial state and the values of *s* are written on the vertices. Strategy TFT is the famous tit-for-tat strategy: cooperate in the first round, then do whatever the other did last time. Since the well-known Axelrod's tournaments [1], tit-for-tat has been considered the major paradigm of altruistic behaviour [4] and [5]. Strategy PAV (for Pavlov) was introduced by Nowak and Sigmund [9] and shown to outperform TFT in computer runned simulations of heterogeneous sets of probabilistic strategies. Our computer programs show that the *intolerant strategy* 10 outperforms all deterministic strategies with two states and 11 outperforms all deterministic strategies with at most three states.



Let $_{p1}, ..., _{pn}$ be deterministic strategies and consider a *society* $S = S(u_1:p_1|i=1,...,n)$ formed by $u = \sum_{i=1}^{n} u_i$ individuals playing at random the IPD with admissible weight w (i.e. in each round, two individuals are chosen randomly to play the next step of the corresponding IPD, each individual recalling their last play against one another and responding accordingly), among them, $0 < u_i$ individuals use strategy $_{pi}$. We shall assume that there is an unlimited number of rounds, all occurring with probability one. (For certain considerations of the IPD it is assumed, see [1], that the next round happens with probabilityw < I. The limiting case w = I is usually of great interest, see [8] for a discussion). Many interesting problems arise from the consideration of the *terminal pay-off* $g_S(x) = \lim_{t \to \infty} \frac{g(w)(x)}{t}$ of an individual x in the society S, where $_{g(t)}(x)$ is the pay-off accumulated by x in the first t rounds. Observe that, for the sake of simplicity, we omit the dependence on the parameter w, but we may write $g_S^{(w)}(x)$ for $_{gS}(x)$ if we want to stress the parameter w of the IPD.

In Section 2, we show that in case the individual x uses strategy p_i , then

$$g_{\mathcal{S}}(x) = \frac{2}{u(u+1)} \left[(u_i - 1)g(p_i : p_i) + \sum_{i \neq j} u_j g(p_i : p_j) \right],$$

Turn MathJaxon

where $g(p_i;p_j)$ is the *terminal pay-off* of p_i relative to p_j . We shall consider the *pay-off matrix* of the society S as the $n \times n$ -matrix $G = (g(p_i; p_j))$ (we write $G^{(w)} = (g^{(w)}(p_i; p_j))$ in case we want to make explicit the parameter w. According to Maynard Smith [6], a strategy is evolutionary stable if an infinite homogeneous population adopting it (i.e. n = 1 and $S = S(u_1:u_1)$, for $u_1 \gg 0$) cannot be invaded by mutants. We generalize the concept and say that a society $S = S(u_i; p_i | i = 1, ..., n)$ is stable if any individual of S performs, at the long run, better keeping its strategy than changing to a new one. In Section 3 we prove that for a set p1,..., pn of retaliatory strategies with $g(p_i : p_j) \ge 0$ $(1 \le i, j \le n)$ and society S(ui: pi | i = 1, ..., n) is stable. We recall that a strategy $p = (\{a_0, a_1, \dots, a_n\}, f_0, f_1, s)$ is retaliatory if $s(f_0(a)) = 0$ for any state a. This result generalizes the observation in [1] that TFT is an ESS. We shall say that a society $S = S(u_i; p_i | i = 1..., n)$ is *w*-successful if for any individual *x* of *S* we have $g_{\mathcal{S}}^{(w)}(x) \geq 0$. It will be easy to show that S is w-successful if and only if $G^{(w)}u \ge (g^{(w)}(p_i;p_i); i=1,...,n) = g^{(w)}$ as column vectors. This gives conditions on the matrix $G^{(w)}$ for the existence of entries $_{ui} > 0$, (i = 1, ..., n) such vectors *u* with all that S is w-macrothat $S(u_i: p_i | i = 1, ..., n)$ is *w*-successful. We shall say if $\sum_{x \in S} g_S^{(w)}(x) = \sum_{i=1}^n u_i g_S^{(w)}(x_i) \ge 0$, for any selection successful of individuals xi with strategy p_i $(1 \le i \le n)$. Clearly, an individual x is w-successful in the society S if at the long run its pay-off increases. In the same way, the society S is w-macrosuccessful if the total pay-off (the sum of the pay-offs of its 'citizens') eventually increases. In Section 4, we introduce the quadratic form $q^{(w)}_{(p_1,\ldots,p_n)}(X_1,\ldots,X_n)$ associated with the symmetric matrix $\frac{1}{2}(G^{(w)} + (G^{(w)})^{t})$ and show that $S(u_i: p_i | i = 1, ..., n)$ is w-macroonly if $q_{(p_1,...,p_n)}^{(w)}(u_1,...,u_n) \ge (u_1,...,u_n)^t g^{(w)}$ if and successful Finally, $S(u_i:p_i|i=1,...,n)$ is w-macro-successful for any choice of numbers $u_1,...,u_n$ with big enough $u = \sum_{i=1}^{n} u_i$ if and only if the quadratic form $q_{(p_1,\ldots,p_n)}^{(w)}(X_1,\ldots,X_n)$ is weakly

positive , that is $q_{(p_1,\ldots,p_n)}^{(w)}(v_1,\ldots,v_n) > 0$ for any vector $0 \neq (v_1,\ldots,v_n) \in N^n$. We give conditions on the matrix $\frac{1}{2}(G^{(w)} + (G^{(w)})^t)$ characterizing the weak positivity of $q_{(p_1,\ldots,p_n)}^{(w)}(X_1,\ldots,X_n)$.

Clearly, the concepts of success for individuals in a society S or that of successful societies depend on the chosen parameters T, R, P and S. The relativity of the concepts stresses the fact

that the pay-off of strategies playing the IPD depend as much on the structure of the strategies themselves as on the setting of the game. Observe the particular role played by 0 in the definitions: an individual playing the strategy p against an individual playing the strategy p' is *w*-successful (in this game) if and only if the pay-off $g^{(w)}(p:p') \ge 0$. For further remarks see Section 5.

2. Deterministic strategies

2.1.

Recall that a *deterministic strategy* p is a tuple $(\{a_0, a_1, \dots, a_n\}, f_0, f_1, s)$ where $\{a_0, a_1, \dots, a_n\}$ is a finite set of states, with a_0 a distinguished *initial state* $f_0: \{a_0, a_1, \dots, a_n\} \longrightarrow \{a_0, a_1, \dots, a_n\}$ and $f_1: \{a_0, a_1, \dots, a_n\} \longrightarrow \{a_0, a_1, \dots, a_n\}$ are *transition functions* of the states and $s\{a_0, a_1, \dots, a_n\} \longrightarrow \{0, 1\}$ the *outcome function*. Given two deterministic strategies

$$p = (\{a_0, \dots, a_n\}, f_0, f_1, s)$$

Turn MathJaxon

Turn MathJaxon

and
$$p' = (\{b_0, \ldots, b_m\}, f'_0, f'_1, t),$$

define the *tournament* t(p:p') as an oriented graph with *j*th vertex $x_j = a'_j : b'_j$, where a'_j is a state of *p*, b'_j is a state of *p'*

Turn MathJaxon

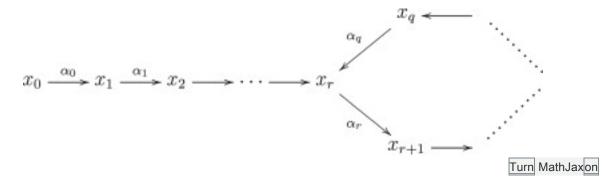
with
$$a'_0 = a_0, b'_0 = b_0$$
 and arrows
 $x_j = a'_j : b'_j \xrightarrow{\alpha_j} x_{j+1} = f_{t(b'_j)}(a'_j) : f'_{s(a'_j)}(b'_j).$

Turn MathJaxon

We identify $_{a,j}$ with $s(a'_j): t(b'_j)$. In other words, t(p:p') is the orbit of $(_{a0,b0})$ under the function $f \times f': \{_{a0}, \dots, _{an}\} \times \{_{b0}, \dots, _{bm}\} \rightarrow \{_{a0}, \dots, _{an}\} \times \{_{b0}, \dots, _{bm}\}$

Turn MathJaxon

where
$$(f \times f')(a_i, b_j) = (f_{t(b_j)}(a_i), f'_{s(a_i)}(b_j))$$
. Therefore $t(p:p')$ has the shape



with $q \le nm$. It is clear that

$$\lim_{t \to \infty} \frac{1}{t} g_{(t)}(p:p') = \frac{1}{c(p:p')} \sum_{i=r}^{q} g(\alpha_i) =: g(p:p') \text{ for } c(p:p') = q - r + 1$$

is the *terminal pay-off* of *p* relative to *p'*, where $g(p)(p:p') = \sum_{i=0}^{t} g(\alpha_i)$ and $_{gi}(p:p') = g(\alpha_i)$ is the pay-off of *p* relative to *p'* at the *i*th step of the IPD (where g(1:1) = R, g(0:0) = P, g(0:1) = T and g(1:0) = S) and c(p:p') is the length of the cycle in the orbit. For examples see Section 5.

2.2.

Let *S* be a society with *u* individuals. Society *S* plays random *IPD* as follows: consider two different individuals *x* and *y*, *x* playing with strategy *p* and *y* playing with strategy p'. At round *t*, the couple (x, y) may not be confronted, then the pay-off gt(x:y)=0. In case *x* and *y* are confronted for the *j*th time, then the tournament t(p:p') yields the arrow

$$a'_{j-1}:b'_{j-1}\stackrel{lpha_{j-1}}{\longrightarrow}a'_j:b'_j$$

Turn MathJaxon

and therefore $g_t(x:y) = g_j(p:p')$. That is, each player keeps track of past play against all individual players.

Lemma.

The expected value $_{\mathfrak{gt}}(x;y)$ is $g_t(x;y) = \frac{1}{\underline{u}} \left(1 - \frac{1}{\underline{u}} \right)^{t-1} \left[\sum_{k=1}^t \binom{t-1}{k-1} \left(\frac{1}{\underline{u}-1} \right)^{k-1} g_k(p:p') \right]$ Turn MathJaxon

where $\underline{u} = \frac{1}{2}u(u-1)$. Proof. Let p(t,k) be the probability to select the couple (x,y) at the round t for the kth time. Out of \underline{u}^{t} possible selections of couples, couple (x,y) is selected k times, the other t-k times any of the remaining $\underline{u}^{t} - 1$ couples is selected. Then

$$p(t,k) = \frac{1}{\underline{u}^t} {t-1 \choose k-1} (\underline{u}-1)^{t-k}.$$

Turn MathJaxon

Hence,

$$g_t(x:y) = \sum_{k=1}^t p(t,k) g_k(p:p') = \frac{1}{\underline{u}^t} \sum_{k=1}^t \binom{t-1}{k-1} (\underline{u}-1)^{t-k} g_k(p:p')$$

which is the desired expression. \Box

2.3.

There is an interesting consequence of (2.2): an individual x with strategy $(f_{a0}, ..., a_n), f_{0, f_{1}}, s$ may profit for a long while from a confident homogeneous society S acting with strategy $p' = (\{b0, ..., bm\}, g_{0}, g_{1}, s')$ if $s(a_{0}) = 0$, $s'(b_{0}) = 1$ and S is large enough. More precisely, let u be the number of individuals in S.

Lemma.

We have
$$g(t)(x;y) \ge 0$$
 as long as $t \le \ln\left(1 - \frac{T}{S}\right) \left[\ln \underline{u} - \ln(\underline{u} - 1)\right]^{-1} + 1$.

Proof.

By hypothesis $g_1(p:p') = T$ and clearly, $g_i(p:p') \ge S$ for $i \ge 2$. Then

$$g_{(t)}(x:y) \ge \left(1 - \frac{1}{\underline{u}}\right)^t \left[\frac{T}{\underline{u} - 1} + S\sum_{k=2}^t \binom{t-1}{k-1} (\underline{u} - 1)^{-k}\right]$$
$$= \left(1 - \frac{1}{\underline{u}}\right)^t \left\{\frac{T}{\underline{u} - 1} + \frac{S}{\underline{u} - 1}\left[\left(\frac{\underline{u}}{\underline{u} - 1}\right)^{t-1} - 1\right]\right\}.$$
Turn MathJaxon

Therefore
$$g(t)(x;y) \ge 0$$
 if and only if $\left(\frac{\underline{n}}{\underline{n}-1}\right)^{t-1} \le 1 - \frac{T}{5}$. \Box

For a numerical example, consider T=2, S=-3, for $u \gg 0$, $\ln \underline{u} - \ln(\underline{u} - 1) \approx \frac{1}{\underline{u}}$, then $_{g(t)}(x;y) > 0$ for $l \leq 0.51 \underline{u}$.

2.4.

The next Proposition only expresses the fact that, after a preperiod, all the confrontations between individuals enter in a tournament-cycle determined by their strategies.

Proposition.

Let $S = S(u_i; p_i | i = 1, ..., n)$ and x be an individual of S with strategy p_i . Let $u = \sum_{j=1}^{n} u_j$ be the total population of S. Then

$$g_{\mathcal{S}}(x) = \lim_{t \to \infty} \frac{g_{(t)}(x)}{t} = \frac{1}{\underline{u}} \left[(u_i - 1)g(p_i : p_i) + \sum_{j \neq i} u_j g(p_i : p_j) \right].$$
Turn MathJaxon

Proof.

Let $_{xj}$ be an individual of S with strategy $_{pj}$. Then

$$g_{\mathcal{S}}(x) = (u_i - 1) \lim_{s \to \infty} \frac{g_{(s)}(x : x_i)}{s} + \sum_{j \neq i} u_j \lim_{s \to \infty} \frac{g_{(s)}(x : x_j)}{s}$$

Turn MathJaxon

if all limits exist.

Recall that

$$g_{(s)}(x:x_j) = \sum_{t=1}^{s} g_t(x:x_j) \text{ and } g_t(x:x_j) = \frac{1}{\underline{u}^t} \sum_{k=1}^{t} \binom{t-1}{k-1} (\underline{u}-1)^{t-k} g_k(p_i:p_j).$$
Turn MathJaxon

Moreover $g_{k0+kc+m}(p_i:p_j) = g_{k0+m}(p_i:p_j)$, for c the length of the tournamentcycle, $c = c(p_i; p_j) > m \ge 0$ and k0 the length of the preperiod in the tournament t(p; p'). Consider $|_{gk}(p_i:p_j)| \le \gamma$ for $k = 1, \dots, k_0$ and

$$c(t,k_0) = \sum_{k=1}^{k_0} \binom{t-1}{k-1} (\underline{u}-1)^{t-k}, d(t,k_0) = \sum_{k=k_0+1}^{t} \binom{t-1}{k-1} (\underline{u}-1)^{t-k},$$

Turn MathJaxon

$$\underline{c}(t,k_0) = \sum_{k=1}^{k_0} \binom{t-1}{k-1} \left(\frac{1}{\underline{u}-1}\right)^{k-1}, \\ \underline{d}(t,k_0) = \sum_{k=k_0+1}^{t} \binom{t-1}{k-1} \left(\frac{1}{\underline{u}-1}\right)^{k-1}, \\ \underline{\mathrm{Turn}} \text{ MathJaxon}$$

hence
$$\underline{c}(t, k_0) = \left(\frac{1}{\underline{u}-1}\right)^{t-1} c(t, k_0), \underline{d}(t, k_0) = \left(\frac{1}{\underline{u}-1}\right)^{t-1} d(t, k_0)$$
Therefore

Therefore

$$\left|\frac{1}{s}g^{(s)}(x:x_j)\right| = \left|\frac{1}{s}\sum_{t=1}^s g_t(x:x_j)\right| \le \frac{\gamma}{s}\sum_{t=1}^s \frac{1}{\underline{u}}\left(1-\frac{1}{\underline{u}}\right)^{t-1} \left[\underline{c}(t,k_0) + \underline{d}(t,k_0)\right] = \frac{\gamma}{\underline{u}},$$

Turn MathJaxon

and $\lim_{t\to\infty} \frac{\underline{d}(t,k_0)}{\underline{d}(t,k_0)} = \lim_{t\to\infty} \frac{\underline{c}(t,k_0)}{\overline{d}(t,k_0)} = 0$. Hence

$$\begin{split} \lim_{s \to \infty} \frac{1}{s} g_{(s)}(x:x_j) &= \frac{1}{\underline{u}} \lim_{s \to \infty} \frac{1}{s} \sum_{t=1}^s \left(1 - \frac{1}{\underline{u}} \right)^{t-1} \left(\sum_{k=k_0}^t \binom{t-1}{k-1} \left(\frac{1}{\underline{u}-1} \right)^{k-1} g_k(p_i:p_j) \\ &= \frac{1}{\underline{u}} \lim_{s \to \infty} \frac{1}{s} \sum_{t=1}^s \left(1 - \frac{1}{\underline{u}} \right)^{t-1} \left[\sum_{\ell=0}^{c-1} \left\{ \sum_{k=k_0+r_c+m} \binom{t-1}{k-1} \left(\frac{1}{\underline{u}-1} \right)^{k-1} \right. \\ &= \frac{1}{\underline{u}} \lim_{s \to \infty} \frac{1}{s} \sum_{t=1}^s \left(1 - \frac{1}{\underline{u}} \right)^{t-1} \frac{1}{c} \left(1 + \frac{1}{\underline{u}-1} \right)^{t-1} \left(\sum_{\ell=0}^{c-1} g_{k_0+\ell}(p_i:p_j) \right) \\ &= \operatorname{Im} \operatorname{MathJaxon} \end{split}$$

The proof is complete. \Box

3. Stability

3.1.

Let w = (T, R, P, S) be an admissible weight. In the next sections it will be of importance to make explicit the parameter w. Let p1,..., pn be deterministic strategies. А society $S = S(u_i; p_i | i = 1, ..., n)$ is said to be be *w*-stable if for every individual x in S using strategy pi and any other strategy po defining а society S $=S(I:_{p0};_{u1}:_{p1};...;_{ui}-I:_{pi}:...;_{un}:_{pn}) \text{ we have } g_{S'}^{(w)}(x') \leq g_{S}^{(w)}(x) \text{, for the individual } x$ ' in S' with strategy {, 0}. This translates to the condition: for every strategy {, 0}, we have $(u_i - 1)g^{(w)}(p_0: p_i) + \sum_{i \neq i} u_j g^{(w)}(p_0: p_j) \le (u_i - 1)g^{(w)}(p_i: p_i) + \sum_{i \neq i} u_j g^{(w)}(p_i: p_j)$ Turn MathJaxon

In the case of a homogeneous society (n = 1), this is equivalent to $g^{(w)}(p_0;p_1) \le g^{(w)}(p_1;p_1)$

Turn MathJaxon

which is a condition in the limit of ESS as defined in [6].

3.2.

We recall that a strategy $p = (\{a_0, a_1, ..., a_n\}, f_0, f_1, s)$ is *nice* if $s(a_0) = l$ and $s(f_1(a_j)) = l$, for $l \le j \le n$; *p* is *retaliatory* if $s(f_0(a_j)) = 0$, for $l \le j \le n$. We shall say that *p* is *w*-self-supportive if g(w)(p:p) > 0.

Lemma.

Let p, p' be two strategies. Then

(i)

Always $g^{(w)}(p:p) \leq R$. If p is nice, then $g^{(w)}(p:p) = R$ and hence p is w-self-supportive. (ii)

If p and p' are retaliatory, then either $g^{(w)}(p:p') = R$ or $g^{(w)}(p:p') \le 0$.

(iii)

If p is retaliatory, then p is w-self-supportive if and only if $g^{(w)}(p:p) = R$.

Proof.

cycle in t(p:p) has a arrows of the form 1:1 and b of the (i) The form 0:0. Then $g^{(w)}(p:p) = \frac{aR+bP}{a+b} \le \frac{aR}{a+b} \le R$. If the strategy *p* is nice, when paired with itself, it will cooperate indefinitely, resulting in the average pay-off of R. (ii) The cycle in t(p:p') has a arrows of the form 1:1, b of the form 0:0, c of the form 0:1 and d of the form 1:0. Then $g^{(w)}(p:p') = \frac{aR+bP+cT+dS}{a+b+c+d}$. If both p and p then b > 0 implies that a = c = d = 0 and $g^{(w)}(p:p^{(v)}) < 0$. If c > 0, are retaliatory, then c = d and a = b = 0, implying that $g^{(w)}(p : p') = \frac{T+S}{2} < 0$. Indeed, in this case, the tournament-cycle has an arrow corresponding to the outcome 0:1 which implies that 0:0 is not a possible outcome, by the first considered case. Then after 0:1, the second player retaliates and only I:0 is a possible outcome. This repeats over to show that there are the same number of 0:1 outcomes as 1:0 outcomes in the or c = d. Similarly, if d > 0, cycle, then b=d and a=c=0 and $g^{(w)}(p:p')=\frac{p+s}{2}<0$ (iii) follows from (i) and (ii).

Proposition 3.3.

Let p1,..., pn be retaliatory strategies such that $g(_{w0})(_{pi};_{pj}) \ge 0$, for any $1 \le i$, $j \le n$ and some admissible weight $_{w0}$.

Then $S(u_i; p_i | i = 1, ..., n)$ is w-stable for any admissible weight w and any vector $u \in N^n$.

Proof.

By <u>3.2</u>, for any admissible weight w = (T, R, P, S), we have $g^{(w)}(_{pi}; _{pj}) = R$, for all $l \le i, j \le n$, and for any other strategy $_{p0}$, we have $g^{(w)}(_{p0}; _{pi}) \le R$. Then

4. Successful societies

4.1.

Let w = (T, R, P, S) be an admissible weight. Let p_1, \dots, p_n be deterministic strategies and $G^{(w)} = (g^{(w)}(p_i; p_j))$ the *terminal pay-off* $n \times n$ -matrix.

Let $S = S(_{ui};_{pi}|i=1,...,n)$ be a society corresponding to the given strategies. Then an individual x in S is said to be w-successful in the society S if the terminal pay-off $g_S^{(w)}(x) \ge 0$. If x uses the strategy $_{pi}$, this is equivalent to $(G(w)u)i \ge g^{(w)}(_{pi};_{pi}),$

Turn MathJaxon

where u is the column vector with *i* th entry u_i , that is, the individual x gets a higher pay-off from being part of the society S than if it were to form a society with individuals playing the same strategy p_i .

Proposition.

The society $S = S(u_i; p_i | i = 1, ..., n)$ is w-successful if and only if $G^{(w)} u \ge g^{(w)}$

Turn MathJaxon

where $g^{(w)}$ is the column vector whose *i* th entry is $g^{(w)}(p_i;p_i)$.

4.2.

Consider the vector space $V = R^n$. A *cone* K in V is a closed subset satisfying: (i) $0 \in K$, (ii) for $v \in K$ and $\lambda \ge 0$, then $\lambda v \in K$, (iii) if $v, v' \in K$, then $v + v' \in K$. The cone K is said to be *proper* if $K \cap (-K) = \{0\}$ and is said to be *solid* if it contains a basis of V.

The set V^* of vectors v with non-negative coordinates is a solid proper cone in V. Given a linear transformation $A: V \to V$ and a cone $K \subset V$, the image A(K) and the preimage $A^{-1}(K)$ are cones. The interior V^0 of V^* is formed by those $v \in V^*$ such that $v_i > 0$ for every $1 \le i \le n$, we write $0 \ll v$ for $v \in V^0$.

Theorem.

Let $_{p1}, ..., _{pn}$ be deterministic w-self-supportive strategies and $G^{(w)} = (g^{(w)}(_{pi};_{pj}))$ be the terminal pay-off matrix. The following are equivalent:

(a)

There exists a society $S(u_i:p_i | i = 1, ..., n)$ which is w-successful.

(b)

There exists a vector $0 \ll u \in R^n$ such that $G^{(w)}u \gg 0$.

(c) $(G^{(w)})^{-1}(V^{+}) \cap V^{+}$ is a solid cone.

Proof.

(a) \Rightarrow (b): If $S(_{ui}:_{pi}|i=1,...,n)$ is *w*-successful, then $G^{(w)}u \ge g^{(w)} \gg 0$ because all $_{pi}$ are selfsupportive strategies. For the converse, observe that by continuity, we may assume that $0 \ll u \in Q^n$ and $G^{(w)}u \gg 0$. Then for some natural number *m*, we get $0 \ll v = mu \in N^n$ and $G^{(w)}v = mG^{(w)}u \ge g^{(w)}$.

(b) \Rightarrow (c): Clearly, $(G^{(w)})^{-1}(V^{+}) \cap V^{+}$ is a cone and there is a number $\varepsilon > 0$ such that for any vector $v \in R^n$, $||v - u|| < \varepsilon$, then $v \gg 0$ and $G^{(w)}v \gg 0$. Then the ball $_{\mathbb{B}_{\epsilon}}(u) \subset (G^{(w)})^{-1}(V^{+}) \cap V^{+}$ is solid. The implication (c) \Rightarrow (b) is clear. \Box

4.3.

Let
$$_{p_1,\ldots,p_n}$$
 be deterministic strategies. Consider the symmetric
matrix $A^{(w)}(p_1,\ldots,p_n) \coloneqq \frac{1}{2} \left(G^{(w)} + (G^{(w)})^t \right)_{and}$
 $q^{(w)}_{(p_1,\ldots,p_n)}(X_1,\ldots,X_n) = \sum_{i=1}^n g^{(w)}(p_i:p_i)X_i^2 + \sum_{i< j} (g^{(w)}(p_i:p_j) + g^{(w)}(p_j:p_i))X_iX_j$
Turn MathJaxon

the associated quadratic form.

Recall from the Introduction that the society $S = S(u_i; p_i | i = 1, ..., n)$ is *w*-macro-successful if $\sum_{x \in S} g_S^{(w)}(x) = \sum_{i=1}^n u_i g_S^{(w)}(x_i) \ge 0$, for any selection of individuals *x_i* using the strategy P_i $(1 \le i \le n)$. Obviously a *w*-successful society is *w*-macro-successful.

Corollary.

Let $_{p1}, \ldots, _{pn}$ be strategies and let $S = S(u_i; _{pi}|i=1, \ldots, n)$ be a society. Then S is w-macrosuccessful if and only if $q_{(p_1, \ldots, p_n)}^{(w)}(u_1, \ldots, u_n) \ge u^t g^{(w)}$. Moreover, this number is positive if all strategies $_{p1}, \ldots, _{pn}$ are w-self-supportive.

Proof.

Let $_{xi}$ be an individual in S using strategy $_{pi}$. Observe that

$$\sum_{x \in S} g_S^{(w)}(x) = \sum_{i=1}^n u_i g_S^{(w)}(x_i)$$

= $\sum_{i=1}^n u_i (u_i - 1) g^{(w)}(p_i : p_i) + \sum_{i < j} u_i u_j [g^{(w)}(p_i : p_j) + g^{(w)}(p_j : p_i)]$
= $q_{(p_1, \dots, p_n)}^{(w)}(u_1, \dots, u_n) - u^t g^{(w)}.$

<u>Turn</u> MathJax<u>on</u>

The claim follows. \Box

4.4.

We shall say that the deterministic strategies p_1, \ldots, p_n are *w*-compatible if for vectors $(u_1, \ldots, u_n) \in N^n$ with big enough $u = \sum_{i=1}^n u_i$ we get societies $S(u_i; p_i | i = 1, \ldots, n)$ which are *w*-macro-successful. We characterize compatible strategies by properties of the associated quadratic form $q_{(p_1, \ldots, p_n)}^{(w)}(X_1, \ldots, X_n)$ and then by simple properties of the symmetric matrix $A^{(w)}(p_1, \ldots, p_n)$.

Theorem.

Let p1,..., pn be deterministic strategies. Then the following are equivalent:

(a)

p1,..., pn are w-compatible.

(b) $q_{(p_1,...,p_n)}^{(w)}(X_1,...,X_n)$ is weakly positive, i.e. for every vector $0 \neq v \in R^n$ with nonnegative coordinates we have $q_{(p_1,...,p_n)}^{(w)}(v) > 0$

Proof.

(a) \Rightarrow (b): Assume p1,..., pn are w-compatible and let $0 \neq v \in N^n$. Consider $m \in N$ such that w = mv has $\sum_{i=1}^{n} w_i$ big enough. Then $S(w_i; p_i | i = 1, ..., n)$ is w-macro-successful and by $\underline{4.3}$,

$$0 < q_{(p_1,...,p_n)}^{(w)}(w) = m^2 q_{(p_1,...,p_n)}^{(w)}(v) \text{ and } 0 < q_{(p_1,...,p_n)}^{(w)}(v).$$
Turn MathJaxon

(b) \Rightarrow (a): Consider the compact set $C = \{v \in R^n : 0 \le v \text{ and } \|v\| = 1\}$. The hypothesis implies that the form $q_{(p_1, \dots, p_n)}^{(w)}(X_1, \dots, X_n)$ reaches a minimum $\gamma > 0$ in C and the linear form $\sum_{i=1}^{n} g^{(w)}(p_i : p_i) X_i$ reaches a maximum δ . Then for any vector $u = (u_1, \dots, u_n)^i \in N^n$ with $q_{(p_1, \dots, p_n)}^{(w)}(u) < u^t g^{(w)}$,

Turn MathJaxon

we have

$$\gamma \|u\|^{2} \leq q_{(p_{1},...,p_{n})}^{(w)} \left(\frac{u}{\|u\|}\right) \|u\|^{2} = q_{(p_{1},...,p_{n})}^{(w)}(u) < u^{t}g^{(w)} = \|u\| \left(\frac{u^{t}}{\|u\|}\right)g^{(w)} \leq \|u\|\delta.$$

$$\underline{\operatorname{Turn}} \operatorname{MathJaxon}$$

Therefore $\|u\| \leq \delta/\gamma$ and only finitely many vectors $u \in N^n$ may have this property. Therefore for $\sum_{i=1}^{n} u_i \gg 0$ we have $q_{(p_1,...,p_n)}^{(w)}(u) \geq u^t g^{(w)}$, that is, $S(u_i:p_i|i=1,...,n)$ is w-macro-successful. \Box

4.5.

There are good criteria to decide whether or not the quadratic form $q(x) = x^{t}Ax$, associated to a symmetric $n \times n$ matrix A, is weakly positive. The following is a simple generalization of a result by Zel' dich [10] (see also [3]).

Proposition.

Let *A* be a symmetric matrix and $q(x) = x^{t}Ax$ the associated quadratic form. The following are equivalent:

(a)

q(x) is weakly positive.

(b)

For every principal submatrix $B = A \begin{pmatrix} i_1 \dots i_s \\ i_1 \dots i_s \end{pmatrix}$ of A, either detB > 0 or the adjoint matrix ad(B) is not positive (that is, it has an entry ≤ 0).

Proof.

(a) \Rightarrow (b): Let *B* be a principal submatrix of *A*. Suppose that $\mathbf{ad}(B)$ is positive. By Perron theorem, $\mathbf{ad}(B)\mathbf{v} = \rho\mathbf{v}$ for a vector $0 \neq v \geq 0$ and the spectral radius $\rho > 0$. Then $\mathbf{0} < \mathbf{q}(\mathbf{v}) = \mathbf{v}^t B \mathbf{v} = \rho^{-1} \mathbf{v}^t B \operatorname{ad}(B) \mathbf{v} = \rho^{-1} \operatorname{det} B \mathbf{v}^t \mathbf{v}$ and $\det B > 0$.

(b) \Rightarrow (a): We show that q(x) is weakly positive by induction on *n*. Since property (b) is inherited to principal submatrices, we get that the restriction $q^{(i)}$ associated to the principal submatrix $A^{(i,i)}$ is weakly positive, i = 1, ..., n.

Assume that q is not weakly positive. Then there is a vector $0 \ll w$ with $q(w) \le 0$.

We *claim* that $q^{(i)}$ is positive for all $1 \le i \le n$. Otherwise, $q^{(i)}(x) \le 0$ for some vector $0 \ne x \in R^{n-1}$. Since $q^{(i)}$ is weakly positive, then $x_a > 0$ and $x_b < 0$ for indices a, b. We may consider $y \in R^n$ with $y_j = x_j$ for $j \ne i$ and $y_i = 0$.

We find two points $w + \lambda^{1}y$ and $w + \lambda^{2}y$ in the boundary ∂V^{+} of the positive cone V^{+} in \mathbb{R}^{n} . Hence the parabola $q(w + \lambda y) = q(w) + \lambda w^{t}Ay + \lambda^{2}q(y)$ takes values >0 (resp. $\leq 0, >0$) in $\lambda = \lambda^{1}$ (resp. $\lambda = 0, \lambda = \lambda^{2}$). Hence $q(w + \lambda y)$ takes positive values for $\lambda \geq \lambda^{2}$. Therefore $0 < q(y) = q^{(1)}(x) \leq 0$, a contradiction proving the claim.

In particular, every proper principal submatrix *B* of *A* has detB > 0. Since *A* is not positive, $detA \le 0$. By hypothesis, ad(B) is not positive. Assume that the *j*th row *v* of ad(A) is not positive. Choose $\lambda \ge 0$ such that $0 \le \lambda w + v$ lies on ∂V^+ . Hence

$$0 < q(\lambda w + v) = \lambda^2 q(w) + \lambda w^{t} A v + q(v) \le \lambda (detA)_{wj} + (detA)_{vj} \le (detA)(detA^{(j,j)}) \le 0,$$

Turn MathJaxon

since by the claim $q^{(j)}$ is positive. This contradiction completes the proof of the result. \Box

5. Dependence on the admissible weights

5.1.

In this section we shall discuss in which way the former results depend on the fixed admissible weight w with which the IPD is played. The discussion is motivated by remarks of a referee of the paper.

Let w = (T, R, P, S) satisfying be an *admissible weight*. Given p and p' two deterministic strategies, we denote by $g^{(w)}(p:p')$ the relative pay-off of p playing the IPD with initial conditions w against p'.

Lemma.

The set of admissible parameters $w \in R^4$ satisfying $g^{(w)}(p:p') \ge 0$ together with the origin 0 form a cone C(p:p') in R^4 . Moreover:

(i) The cone C(p:p') is either 0 or a solid cone.

(ii) If C(p:p')=0 then for any admissible tuple w we get $g^{(w)}(p:p') \le g^{(w)}(p':p)$, that is, the pay-off of an individual playing the strategy p is lower than the pay-off of another playing the strategy p', independently of the initial conditions.

(iii) If C(p:p') is a solid cone then the point u = (1, 1, 0, -1) belongs to the topological closure of C(p:p').

Proof.

Observe that for w, w' admissible parameters and r > 0 we get admissible parameters w + w' and rw such that $g^{(w+w')}(p:p') = g^{(w)}(p:p') + g^{(w')}(p:p')$ and $g^{(rw)}(p:p') = rg^{(w)}(p:p')$. Hence C(p:p') is a cone.

Let *a* (resp. *b*, *c* and *d*) be the number of arrows in the tournament-cycle of t(p:p') with outcome 1:1 (resp. 0:0, 0:1 and 1:0). Then for w = (T, R, P, S) we

have $\frac{g^{(\psi)}(p;p')=aR+bP+cT+dS}{a+b+c+d}$

(i) Assume that C(p:p') is not trivial and let $0 \neq w = (T, R, P, S) \in C(p:p')$. Then T > R > 0 > P > S. If both a = 0 and c = 0, then also b = 0 = d. Therefore $C(p:p') = R^4$. Assume that a > 0 then, by slightly modifying R, we get a point $w' \in C(p:p')$ such that $g^{(w')}(p:p') > 0$. We do not lose generality assuming that w = w'. Then there are small values r > 0 such that m = w' that m = w' the theorem is r > 0 such that $r = 1 + b(P + E_2) + c(T + E_3) + d(S + E_4) > 0$, that is the sphere with center w and radius r lies in C(p:p'). Therefore C(p:p') is a solid cone.

(ii) With the notation above, C(p:p') = 0 implies a = 0 = c. Then for any admissible w we get $g^{(w)}(p':p) = \frac{bP+dT}{b+d} \ge \frac{bP+dS}{b+d} = g^{(w)}(p:p')$.

(iii) Let $0 \neq w = (T, R, P, S) \in C(p:p')$. As in (i) we may assume that $g^{(w)}(p:p') > 0$. Then $0 < aR + bP + cT + dS \le (a+c)T + dS \le [-(a+c)+d]S$, which implies that a+c > d. There is a sequence of admissible tuples $W_{\mathbb{R}} = (1 + \frac{1}{n}, 1 + \frac{1}{n}, \frac{1}{n}, -1 + \frac{1}{n})$, for *n* big enough, with $g^{(w)}(p:p') > 0$. \Box

5.2.

Let $p = (p_1, \dots, p_n)$ be a sequence of strategies. We introduce an equivalence relation p_n in the set of all admissible weights in the following way: for w = (T, R, P, S) and w' = (T', R', P', S')write w pW ′ if for) admissible weights we any couple $l \leq i, j \leq n$ the inequality $g^{(w)}(_{pi};_{pj}) > 0$ (resp. = 0, < 0) happens exactly when $g^{(w')}(_{pi};_{pj}) > 0$ (resp. = 0, < 0) holds. Observe that this means that w and w belong to the same sequence of half-spaces in R^4 determined by the hyperplanes Hi,j defined by the linear equation_{ai,j} $R + {}_{bi,j}P + {}_{ci,j}T + {}_{di,j}S = 0$, where ${}_{ai,j}$ (resp. ${}_{bi,j}, {}_{ci,j}, {}_{di,j}$) denotes the number of the tournament-cycle of $t(p_i:p_j)$ with outcome 1:1 (resp. 0:0, 0:1, 1:0).

Proposition.

There is only a finite number of \Box_{P} -equivalence classes of admissible weights. For each equivalence class *C* the topological closure \overline{C} in R^4 is a convex cone. The cone \overline{C} is solid if and only if *C* is an open set.

Proof.

The complement in R^4 of the union of all hyperplanes $H_{i,j}$, for pairs $1 \le i, j \le n$, is formed by a finite number of open subsets U_1, \ldots, U_s . For any $i = 1, \ldots, s$, two points in the open set U_i are $_{p}$ -equivalent. The other equivalence classes are the different walls of the topological closures of the U_i , for $i = 1, \ldots, s$.

Clearly, if *C* is an equivalence class, then its closure satisfies: (i) $\mathbf{0} \in \overline{C}$; (ii) for $\mathbf{v} \in \overline{C}$ and $\lambda \ge 0$, then $\lambda \mathbf{v} \in \overline{C}$ and (iii) if $\mathbf{v}, \mathbf{v}' \in \overline{C}$, then $\mathbf{v} + \mathbf{v}' \in \overline{C}$. If *C* is open, it clearly contains a basis of R^4 and \overline{C} is solid. For the converse, observe that if \overline{C} is solid, then there is an open ball $B_{\Gamma}(x)$ contained in *C*. Then $C = U_i$ for some $l \le i \le s$. \Box

Any $_{p}$ -equivalence class whose topological closure contains the (non-admissible) weight (1, 1, -1, -1) is called a *canonical class*.

Corollary.

There is a canonical class which is open. If w is an admissible weight in a canonical class, then for any pair $l \le i, j \le n$, the inequality $g^{(w)}(p_i; p_j) \ge 0$ implies that $a_{i,j} + b_{i,j} \ge c_{i,j} + d_{i,j}$ in the tournament-cycle of $t(p_i; p_j)$.

Proof.

Observe that the points (1 + 1, 1 - 1, 2, -1 + 1, 3, -1 - 1, 4) with 0 < 1 < 1 < 1 < 1 < 1 < 1 < 1 form a set of admissible weights that cannot be contained in a finite set of non-solid cones. Hence some of these weights lie in a canonical class. The second claim follows by continuity. \Box

5.3.

Let again $p = (p_1, ..., p_n)$ be a sequence of strategies and consider a society $S = S(u_i; p_i|i=1, ..., n)$. Let_{xi} be an individual in *S* playing the strategy p_i , for i = 1, ..., n. As above, define $_{-(S,i)}$ be the equivalence relation in the set of admissible weights such that $w_{-}(s_{i})w'$ if both xi is *w*-successful and w'-successful in the society *S*. By the arguments in <u>5.2</u>, there are finitely many $_{-(S,i)}$ -equivalence classes $_{Ci,1}, \ldots, _{Ci,si}$ of admissible weights. Consider a set *C* of admissible weights of the form $\bigcap_{i=1}^{n} C_{i,t_{i}}$, for some $1 \leq_{t_{1}} \leq_{s_{1}}, \ldots, 1 \leq_{t_{n}} \leq_{s_{n}}$, then two weights w, w' in *C* satisfy the following properties:

(a) Let x be an individual in S, then x is w-successful in S if and only if it is w'-successful in S. Denote $by_{ES}(w)$ the set of indices i such that an individual x playing the strategy pi is w-successful. Hence_ES(w) = ES(w').

(b) The society S is w-successful if and only if it is w[′] -successful. In that case ES(w) = {1,...,n}.
(c) Moreover, the topological closure C of C in R^₄ is a cone.

Corollary.

There is a finite partition c1,..., cm of the admissible weights such that the following holds:

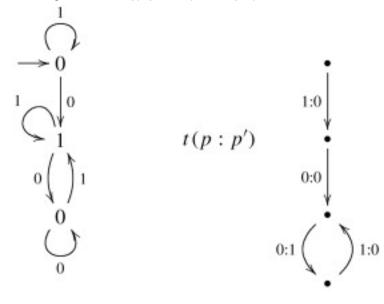
(i) the closure C_1 of each cills a convex cone;

(ii) for any two admissible weights w, w', ES(w) = ES(w') if and only if w and w' belong to the same set Ci for some *i*.

6. Examples

6.1.

For the next examples we fix values T=2, R=1, P=-1, S=-3. Consider p the strategy tit-fortat and p' the strategy given by the digraph



Turn MathJaxon

The tournament t(p:p') is indicated above. The pay-off matrix G is

$$G = \begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{bmatrix}.$$

Then
$$G\begin{pmatrix} x\\ y \end{pmatrix} \ge \begin{pmatrix} 1\\ 1 \end{pmatrix}$$
 is satisfied when
$$x \ge \frac{1}{2}y + 1 \ge \frac{1}{2}\left[\frac{1}{2}x + 1\right] + 1 = \frac{1}{4}x + \frac{3}{2}.$$

Turn MathJaxon

For example, a society S(x:p,y:p') with $x=y\geq 2$ is successful, while S(x:p,2x:p') is not successful.

The associated quadratic form is

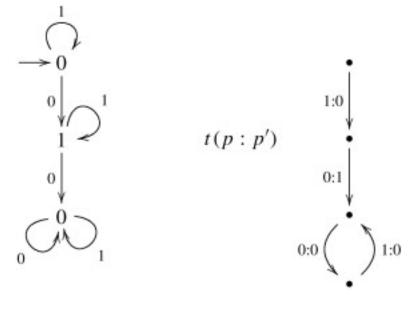
$$q(x, y) = x^{2} - xy + y^{2} = \left(x - \frac{1}{2}y\right)^{2} + \frac{3}{4}y^{2}$$

Turn MathJaxon

which is positive. Then a society S(x:p, y:p') with $x+y \gg 0$ is macro-successful (that is, p and p' are compatible).

6.2.

Consider p the strategy PAV and p' the strategy given by the digraph



Turn MathJaxon

With the values of T, R, P and S as in <u>6.1</u>, the pay-off matrix G is

$$G = \begin{bmatrix} 1 & -\frac{5}{2} \\ \frac{1}{2} & 1 \end{bmatrix}.$$
 Turn Math Ja

Then $G^{-1}V^+ \cap V^+ = \{(x, y): x \ge \frac{5}{2} \ y \ge 0\}$. For example, S(3y; p, y; p'), with $y \ge 2$, is a successful society.

The associated quadratic form is

$$q(x, y) = x^2 - 2xy + y^2 = (x - y)^2$$

Turn MathJaxon

which is not weakly positive. Therefore p and p' are not compatible.

6.3.

Consider p the intolerant strategy 10 and $p' = (\{b, 0, b, 1, ..., b, m\}, f_0, f_1, s)$ any strategy. Observe that in case $a_i = 1:0$ in the tournament t(p:p'), then $a_j = 0:a_j$ for some $a_j \in \{0, 1\}$ and any $j \ge i+1$. Then $g(p:p') = \frac{bP+cT}{b+c}$ and $g(p':p) = \frac{bP+cS}{b+c}$ for some $b,c \ge 0$ and b+c=c(p:p')With the assignment of parameter $g(p:p') = \frac{-b+2c}{b+c}$ and $g(p':p) = \frac{-b-3c}{b+c}$ With). parameters given in 6.1. Otherwise, all $\alpha_i = 1:1$ $(i \ge 1)$ and g(p:p') = g(p':p) = R = 1. In the first case, the associated quadratic form is $q(x, y) = x^{2} - \frac{2b+c}{b+c}xy + g(p':p')y^{2}$

Turn MathJaxon

which is weakly positive if and only if g(p':p') = l and b = 0. In conclusion, given a selfsupportive strategy p', the strategies p and p' are compatible if either g(p:p') = l = g(p)(p) and then any society S(x:p, y:p') is successful or if g(p:p')=2, g(p':p)=-3 and g(p'):p' = 1 and then, only societies S(x:p, y:p') with $y \ge 3x + 1$ are successful.

References

- 1. [1]R. Axelrod
 - The Evolution of Cooperation 0
- 2. [2] J.H. Conway
 - **Regular Algebra and Finite Machines** 0
- 3. [3]J.A. de la Peña

- Quadratic Forms and the Representation Type of an Algebra, Sonderforschungsbereich, vol. 343, Bielefeld (1990)
- 4. [4]L.A. Dugatkin
 - o Cooperation Among Animals. An Evolutionary Perspective
- 5. [5]M. Lombardo
 - o A test for tit-for-tat model of reciprocity
- 6. [6] J. Maynard Smith
 - \circ $\;$ Evolution and the Theory of Games $\;$
- 7. [7]M. Mesterton-Gibbons
- 8. [8]M. Nowak, K. Sigmund
 - \circ $\;$ The evolution of stochastic strategies in the Prisoner's Dilemma
- 9. [9]M. Nowak, K. Sigmund
 - A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's Dilemma game
- 10. [10] M. Zel' dich
 - A criterion for weakly positive quadratic forms